If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2=1000
We move all terms to the left:
b^2-(1000)=0
a = 1; b = 0; c = -1000;
Δ = b2-4ac
Δ = 02-4·1·(-1000)
Δ = 4000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4000}=\sqrt{400*10}=\sqrt{400}*\sqrt{10}=20\sqrt{10}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{10}}{2*1}=\frac{0-20\sqrt{10}}{2} =-\frac{20\sqrt{10}}{2} =-10\sqrt{10} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{10}}{2*1}=\frac{0+20\sqrt{10}}{2} =\frac{20\sqrt{10}}{2} =10\sqrt{10} $
| 5x+3=-2-10x | | x+2+x+4=-62 | | 6.2f+15.51=-19-19.14+2.5f | | 495+97n=980 | | h+17=65 | | -19+7-14b=20-10b | | -17k-20=-14k+20+17 | | 2.5+10m=6.94 | | 6p-1=3(2p+1) | | 4(x+-1)=-16 | | -12u-19+9u=19+11u | | 19=28+x | | 15+16j+16=11j-19 | | (x+16)/3=3 | | 13u-4-10u=-19+4u | | 39-9x-5=23-2x | | q+42=89 | | 40=5(5+4k)-3(5k-5)-5k | | -20+n-20=-11n+20 | | -17+x=23 | | 56y+1=−13y+19 | | 1.3x1.6=0 | | 92=m+52 | | 1+2y-14y=-13y-17 | | 8m-72=8 | | (1+2t)0.5=12 | | 11z-17z=18z | | 5y=-3y-31 | | 3x-4x(x+5)=8 | | 15+50.45x=52.95 | | 3/7x1/x=3/28 | | 8x+5x-x=10 |